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ABSTRACT This paper presents a significant change in current electric power grid response and recovery
schemes by developing a framework for proactive recovery of electric power assets with the primary objective
of resiliency enhancement.Within the proposed framework, which can potentially present the next generation
decision-making tool for proactive recovery, several coordinated models will be developed including:
1) the outage models to indicate the impact of hurricanes on power system components; 2) a stochastic
pre-hurricane crew mobilization model for managing resources before the event; and 3) a deterministic
post-hurricane recovery model for managing resources after the event. Proposed models will be extended
to ensure applicability to a variety of electric power grids with different technologies and regulatory issues.
The theoretical and practical implications of the developedmodels will push the research frontier of proactive
response and recovery schemes in electric power grids, while its flexibility will support application to a
variety of infrastructures, in response to a wide range of extreme weather events and natural disasters.

INDEX TERMS Natural disaster, recovery, resiliency, restoration, smart grid.

I. INTRODUCTION
Natural disasters, particularly the storms are still the
vulnerable point of the electricity infrastructure as one of the
most critical lifeline systems and of utmost importance to
our daily lives. After over half a century from publication
of one of the earliest studies on efficient response to hurri-
canes, motivated by Hurricane Carla that slammed into the
Gulf Coast and moved onward into the United States and
Canada [1], the issue of efficient response to hurricanes and
other natural disasters still seems to remain in its immature
stage. Storms can result in significant economic, social, and
physical disruptions, and cause considerable inconvenience
for residents living in disaster areas due to loss of electricity,
water and communication [2]. Even the notion of ‘‘after a
storm comes a calm,’’ is not the case for the electric power
systems. The electric power grid transfers the electricity gen-
erated by large-scale power plants to a variety of industrial,
commercial, and residential customers via transmission and
distribution networks, and hence it can be disrupted over a
vast geographical area when a hurricane strikes. For instance,
following Hurricane Ike in 2008, more than 2.8 million
customers in the Greater Houston area experienced a power

outage, which lasted from a few days to several weeks. The
total damage from Hurricane Ike in the U.S. coastal and
inland areas was estimated at $24.9 billion [3]. Therefore,
dealing with the aftermath of such disasters is of great
concern of utilities and governments.

The level of complexity and interdependency of systems,
either in urban or rural settings, increases with time. These
complex and interdependent systems are extremely vulnera-
ble to disasters. Development of mitigation strategies which
outflanks the process of risk transference of mega-disasters
is the key to successful management of disasters. In this
context, resistance refers to the capacity to withstand dis-
aster without change, while resilience refers to its capacity
to ‘‘bounce back’’ to a pre-disaster condition [4]. Based on
definition from [5], ‘‘local resiliency with regard to disas-
ters means that a locale is able to withstand an extreme
natural event without suffering devastating losses, damage,
diminished productivity, or quality of life and without a large
amount of assistance from outside the community.’’ The term
storm can alternatively be used for hurricane, typhoon, and
cyclone. According to the National Oceanic and Atmospheric
Adminstration [6], hurricanes, cyclones, and typhoons are
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the same phenomenon, but they can be classified depending
upon the location the storms originate. The term hurricane is
used in the Atlantic and Northeast Pacific; while it is called
typhoon in the Northwest Pacific; and cyclone is used for the
same phenomenon in the South Pacific and Indian Ocean.

A. LITERATURE REVIEW
There is a limited number of studies on the emergency
operation of electric power grids in case of extreme weather
events and natural disasters. The literature can be studied in
four distinct contexts: emergency planning, physical behavior
analysis, outage prediction, and resource allocation.

1) EMERGENCY PLANNING
In this context, reference [7] reviewed the models for
substations and distribution feeders planning under normal
and emergency conditions. A case study on hurricane plan-
ning and rebuilding the electrical infrastructure along the
Gulf Coast for hurricane Katrina was presented in [8]. A risk
assessment method to infrastructure technology planning for
improving the power supply resiliency to natural disasters
was proposed in [9]. Reduced cost as well as power supply
availability were considered as two fundamental deci-
sion factors in their hurricane planning approach. In [10],
a stochastic integer program was proposed to find the optimal
schedule for inspection, damage evaluation, and repair in
post-earthquake restoration of an electric power system. The
aim was to minimize the time that each customer is without
power in average. Reference [11] studied three approaches
for joint damage assessment and restoration of the power sys-
tems after natural disaster. The proposed approaches include
i) an online stochastic combinatorial optimization algorithm
which dynamically makes the restoration decisions once each
potentially damaged site is visited, ii) a two-stagemethod that
first evaluates the extent of the damage and then restores the
system, and iii) a hybrid algorithm of both approaches which
simultaneously performs the damage evaluation and system
restoration tasks. The results indicate that the first approach
is able to provide solutions with higher quality for the joint
damage assessment and recovery problems. Reference [12]
proposed a general multi-objective linear-integer spatial opti-
mization model for arcs and nodes restoration of disrupted
networked infrastructure after disaster. The proposed model
addresses the tradeoff between maximization of the system
flow and minimization of system cost. In [13], an integrated
network design and scheduling problem for restoration of the
interdependent civil infrastructures was proposed. The prob-
lem was formulated using integer programming, and ana-
lyzed on realistic dataset of power infrastructure of the Lower
Manhattan in New York City and New Hanover County,
North Carolina. The results indicate that the proposed model
can be used for real-time as well as long-term restoration
planning. Reference [14] considered the last-mile restoration
of power systems, i.e., how to schedule and allocate the routes
to fleets of repair crews to recover the damaged power system
as fast as possible. The power restoration and vehicle routing

were decoupled to improve the computational efficiency of
the model. The result indicates that the proposed model
outperforms the models which are practiced in the field in
terms of solution quality and scalability. This work was
extended in [15] by applying randomized adaptive vehicle
decomposition technique in order to improve the scalability
of the model for large-scale disaster restoration of the power
networks with more than 24000 components. A comprehen-
sive survey of models and algorithms for emergency response
logistics in electric distribution systems, including reliability
planning with fault considerations and contingency planning
models were presented in [16] and [17].

2) PHYSICAL BEHAVIOR
In the context of physical behavior analysis of power system
infrastructure in hurricanes, [18] analyzed the resilience of
power distribution systems based on the power distribution
infrastructure and its interactionwith the biophysical environ-
ment, and the way that restoration processes are prioritized.
It was concluded that even though the infrastructure does not
have any significant effect on outage duration, the interaction
between infrastructure and the biophysical environment sig-
nificantly affects outage duration. Reference [19] proposed
a comprehensive strategy for mitigation of hazards with the
aim of creating resilient cities which are able to withstand
disasters. The hazard mitigation practices, the definition of
the resilient city, and discussion on importance of resilience,
and the ways that these principles can be applied to physical
and social elements of cities were presented, as well. In [20],
a data mining approach was proposed to evaluate the impact
of soil and topographic variables on accuracy of the power
outage prediction models in hurricane events. The results
indicated that certain land cover variables could be reasonable
proxies for the power system and could be incorporated
in the model when detailed information about the power
system is not available. In [21], a method for characteriza-
tion of the behavior of networked infrastructure, including
power delivery systems in natural hazard events such as
hurricanes was presented. The model also included resilience
and interdependency measures. The proposed model could
be utilized to develop design strategies for improved power
infrastructure resiliency in natural disasters. Reference [22]
proposed a probabilistic framework for vulnerability analysis
of distribution poles subject to hurricane hazards consider-
ing the impact of a changing climate. The results indicate
that changing climate and the age of the poles significantly
increases the failure rate of distribution poles. The impact
of tropical cyclones on United States power systems, under
climate change scenarios was analyzed in [23].

3) OUTAGE PREDICTION
Outage prediction is an important tool for ensuring an effi-
cient response to hurricanes. In this context, [24] introduced
a method for estimating the restoration time of electric power
systems after hurricanes and ice storms. Using large dataset
of six hurricanes and eight ice storms, accelerated failure
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time models were developed to forecast the duration of
each probable outage. In [25], negative binomial regression
models for prediction of outages due to hurricane were
developed. The number of transformers in the area, maximum
wind gust speed, the power company affected, and a hurri-
cane effect turned out to be the most explanatory variables.
Diagnostic statistics such as pseudo R-squared values were
used for model selection purposes. The adopted zip code-
based analysis was used for prediction of the likely outage
rates prior to the hurricane events. In [26], regression anal-
ysis and data mining were employed to develop models for
estimating the number of utility poles that will be damaged
based on damage data from past storms. Results indicated that
hurricane-related damages to the poles can be predicted in an
accurate manner, given that past damage data are available
and adequate. However, the availability of past data could
be a challenging issue which limits the model practicality.
Reference [27] compared the regression methods and data
mining techniques for predicting power outage durations
during hurricanes. The accuracy of Bayesian additive regres-
sion trees (BART) outperformed the other models in their
study. In [28], an outage-forecasting model which is able
to accurately estimate the hurricane-induced outages using
fewer number of input variables was proposed. The power
outage duration models and the key variables along with
their degree of influence on predicting hurricane-induced
outage durations were proposed in [29]. The development of a
hurricane power outage prediction model for U.S. coastlines
using publicly available data was proposed by [30]. The
application of the model for Hurricane Sandy was
demonstrated, and the impacts of some historic storms
on U.S. energy infrastructure were analyzed.

4) RESOURCE ALLOCATION
In this context, [31] presented three mathematical goal
programming models for locating the repair units and restor-
ing the transmission and distribution lines in an efficient
manner. The first model can find the optimal repair-unit
dispatch tactical plan with a forecast of adverse weather
conditions. The second model is able to derive the optimal
repair-unit location for a short-term strategic plan under
normal weather conditions. The third model finds the optimal
number of repair units for a long-term strategic plan.
A mixed-integer programming model and a general column-
generation approach for inventory decision making of power
system components throughout a populated area in order to
maximize the amount of power served after disaster restora-
tion was proposed in [32]. In [33], the service restoration
considering the restrictions on emergency-response logistics
was studied with the objective of minimizing the customers
interruption cost. The reconfiguration and the resource
dispatching issues were considered in a systematic way
for deriving the optimal time sequence in every step of
the restoration plan. In [34], a decision-making model to
manage the required resources for economic power restora-
tion operation was proposed. The optimal number of depots,

the optimal location of depots, and the optimal number of
repair crews were determined by their model in order to
minimize the transportation cost associated with restoration
operation. In [35], a decision support tool for improvement of
information used by electric utilities for managing restoration
of power distribution components damaged due to large-scale
storms was described. The circuit layout, the placement of
protective and switching devices, and the location of cus-
tomers were taken into account to allocate the crew resources
to manage the storm outage in a cost-effective manner.

B. CONTRIBUTIONS
Although variety of problems for electric power grid recovery
in natural disasters events have been addressed in the liter-
ature, few provide a comprehensive and generic approach
for resource allocation which simultaneously considers the
physics of the power grid along with the economic aspects
of the power system. In our previous work [36], we proposed
a post-hurricane restoration scheduling model for a restruc-
tured electricity market using mixed-integer programming.
In [37], we proposed a proactive pre-hurricane restoration
and resource planning model using a two-stage stochastic
program with recourse. In [38], we used stochastic dynamic
programming to model a dynamic asset management strategy
for power systems under hurricane effects.

The existing literature studies the power systems under
extreme weather events and natural disasters from a specific
standpoint. However, a generic and comprehensive model is
still required which not only accurately model each part of
the problem, but also efficiently coordinate these parts. The
effect of natural disasters on the electric power grid as one
of critical lifeline systems from one side, and the lack of
enough research work to keep pace with the increasing trend
of such disasters, provide momentous drivers for enhancing
research in this area of study. This paper investigates the issue
from a new and generic perspective, and accordingly, will
provide viable models for enhancing power grid recovery
and emergency response planning in natural disasters,
particularly hurricanes.

The rest of the paper is organized as follows. Section II
outlines and develops the proactive recovery scheme by
discussing its modules. Section III provides additional
discussions on extending applicability of the proposed
scheme, while Section IV concludes the paper.

II. MODEL DEVELOPMENT
Once the hurricane strikes and results in damage to the
electric power grid infrastructure, the available crews need
to be mobilized to the damage sites to repair the infras-
tructure and restore the system. The efficiency of this post-
hurricane recovery, however, can be significantly improved if
the available crews have already been mobilized to the antic-
ipated damage sites. Therefore, the proactive scheme of the
pre-hurricane recovery plan precedes the reactive scheme of
post-hurricane crew mobilization model. The pre-hurricane
model mobilizes available crews based on damage
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FIGURE 1. Schematic of the proposed proactive recovery scheme.

forecasts and provides an initial solution for the
post-hurricane model.

Fig. 1 illustrates the proposed two-level hurricane recovery
model which can significantly improve the resiliency of the
electric power grid by providing a proactive strategy to cope
with the aftermath of an upcoming hurricane. The first stage
considers the required preparation before the hurricane, in
which the hurricane is forecasted but has not yet hit the
electric power grid. In this level, the reliability functions
against hurricane for major components of the power infras-
tructure need to be developed. The weather forecasts are
incorporated into the reliability functions to model the effects
of upcoming hurricane and its interaction with the physical
behavior of the system. Based on that, the outage state is
defined as probability of failure along with a random variable
which describes the time to repair (TTR) for each damaged
component. Based on projected outage states and using the
system data and operational characteristics, the optimal pre-
hurricane crew mobilization is derived. The obtained values
serve as a starting point for the second-level decision mak-
ing. The second stage is performed after the hurricane in
fact strikes. Using aerial inspection through various medium,
e.g., satellites, helicopters, and drones, the degree of damage
to the infrastructure and the routs to re-mobilize the repair
crews are evaluated. Afterwards, in ground inspection, a
more accurate evaluation of the damaged infrastructure along
with the analysis of the data from Supervisory Control and
Data Acquisition (SCADA) systems are performed. Then,
the outage states and the system data are determined and set
as a single scenario to solve the problem. The solution of
the problem intends to provide an efficient restoration plan
which considers the resource and physical constraints of the

system and incorporates the economic aspects of operation.
The combination of these two models introduces an efficient
response and recovery scheme for addressing the problem of
proactive recovery of the power grid in hurricane events.

We divide the proposed proactive recovery scheme into
three distinct modules: Module 1 analyzes the component
outages based on the path and the intensity of the hurricane,
and develops probabilistic outage models. The outage
models in Module 1 are employed in Module 2 for devel-
oping a stochastic pre-hurricane recovery and crew mobiliza-
tion model. Uncertainty in component outages and time to
repairs are captured via multi-stage stochastic programming
approach. Module 3 introduces the post-hurricane recovery
model, where it uses the solution of pre-hurricane crew
mobilization as an initial solution and provides an operational
recovery model for repairing the damaged components and
restoring the supply of power in the minimum time and cost
possible.

The proposed framework aims to address the necessary
needs of the utility companies and public administrators
by providing an informed decision making tool for effi-
cient and cost-effective restoration of the system in the
case of extreme weather events. The main objective is
to optimize allocation of the available resources to dam-
age sites in order to minimize the restoration cost and
maximize the social welfare by incorporating the oppor-
tunity cost of interrupted loads in the decision making
process.

A. MODULE 1: COMPONENT OUTAGES
Consider the electric power grid in which a subset of its
components are located in the path of an upcoming hurricane.
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The forecasted path and intensity of the hurricane can
be obtained from weather service agencies. The obtained
forecasts are used to indicate the components which are in
the risk of damage. Damage models, however, are required
to derive the probability and the extent of damage to each
component. An accurate mathematical model for the poten-
tial damages to electric power grid components due to the
hurricane is a key ingredient of an efficient response and
recovery plan. Four major components are identified for
damage modeling including generation units, transmission
lines, distribution lines, and substations. Substations act as
the connecting nodes between generation units and trans-
mission lines, as well as between transmission lines and
distribution lines. Substations include power transformers
which are responsible for voltage level change in the grid
and are considered as one of the critical grid components.
Various models have already been proposed to the literature
for modeling weather related failure rate and probability of
damage of electric power grid components [25], [39]–[49].
Damage state can be considered as a random variable
with two outcomes: damaged and operational. Therefore,
without loss of generality, we can adopt a Bernoulli random
variable for modeling the damaged/operational state of each
component. We assume that the Bernoulli random variable,
takes the value of 1 when the state of the component
is considered operational (with probability p); and takes
the value of 0, when the component is considered to be
in damaged state (with probability 1 − p). Therefore,
the probability that the system survives during the
hurricane time window, i.e., the reliability of the com-
ponent, plays a central role to model the damage state
of each component. To this end, using stress-strength
analysis [50], we model the reliability function of each
component against hurricane as a dynamic stress-strength
model as follows

R(τ ) =
∞∑
m=0

P
{
G1 < G

′

1,G2 < G
′

2, . . . ,GN (τ )

< G
′

N (τ ), |N (τ ) = m
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where τ is the time window of upcoming hurricane, R(τ ) is
the reliability function, Gi is the outcome of the ith ran-
dom wind shock from the wind gust speed random variable
denoted by G, G

′

i is the outcome of the random strength
of the component against the ith wind gust denoted by G

′

(i.e., a random variable for the maximum wind gust speed
that the component can withstand), and N (τ ) is the number
of hurricane strikes during time window τ . As shown, the
total joint probability of the withstanding against wind gust
speeds, conditioned on the number of wind gust shocks
forms the reliability function of the component. Poisson
distribution can be used to model the arrival rates of the wind
shocks during the time window of each upcoming hurricane.
By plugging in the Poisson distribution into (1), the general-
ized reliability function for each component can be written

as follows
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where λ is the mean of the Poisson distribution, i.e., the
average hurricane arrival rate during time window τ . The
value of λ can be set based on the historical data. In addition,
based on structural and geographical characteristics of each
component, appropriate random variables need to be used for
G and G

′

in order to derive a customized reliability function
for each major component of the grid, using generalized
reliability function (2). The flexibility of the proposed model
enables the use of any other existing damage distribution
function in a similar way.

When a component of the electricity grid goes offline due
to a damage by hurricane, enough crews are required ro be
allocated to repair the component. The time to repair for each
damaged component is stochastic in its nature. In [27], it was
shown that the repair time is not only a function of the number
of crews, but also other factors, e.g., geographical character-
istics of the area that limit crews access can affect the repair
time. On the other hand, because of the variation in skill level
of the repair crew along with the random nature of the degree
of damage, the time to repair need to be considered as a
random variable. It can be modeled by a random variable and
may take various probability distributions. Random variables
TTRb, TTRi, and TTRl correspond to time to repair for bus b,
generation unit i, and transmission line l, respectively. The
probability distributions most often used to model the time
to repair are the Exponential, Gamma, Normal, Weibull,
and Lognormal [51]. Because of its flexibility, without
loss of generality, the time to repair can be modeled as a
Weibull random variable as follows

fTTRx (t) =

{
ρx
λx

(
t
λx

)ρx−1
e−(t/λx )

ρx if t ≥ 0,

0 otherwise,
(3)

where ρx is the shape parameter, λx is the scale parameter, and
x ∈ {b, i, l}. Therefore, the outage models help to determine
two important pieces of information which will be used in the
pre-hurricane model: operating state of each component, and
the required time to repair of damaged components.

In order to reduce the complexity, and improve the com-
putational efficiency, the mean time to repair (MTTR) can
be used as a reliable substitute for time to repair. The
MTTR is defined as the expected value of the time to repair
random variable. It is considered as the time required to
fully repair a damaged component, or to replace in cases of
complete damage, in order to bring the component to the
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operational state. In the context of scientific management,
the time to repair can be modeled with man-hour unit which
is defined as the amount of work performed by an average
worker during one hour [52]. The higher number of crews
allocated per hour can result in shorter repair time for the
damaged component. However, in this relationship, there is a
saturation point in which allocation of more repair crews per
hour would not make the repair process any faster. Moreover,
there is a minimum number of required crews to repair a
damaged component. This relationship is illustrated in Fig. 2.
Note that this relationship can vary from one component to
another. These pieces of information can be obtained from
historical and human resource data of the electric utility
company. For a case study on thisModule readers are referred
to [38].

FIGURE 2. Time to repair as a function of number of allocated crews
per hour.

B. MODULE 2: PRE-HURRICANE CREW
MOBILIZATION MODEL
Once the stochastic damage state of each component in
the hurricane path and the associated time to repairs are
determined, the pre-hurricane crew mobilization model is
solved using prevailing input data. The objective of the pre-
hurricane crew mobilization model is to proactively allocate
andmobilize the resources in order to enable a quick response
capability to repair potential damages to electric power grid
components in a way that minimizes the expected system
costs, by considering various scenarios for hurricane strikes.
The expected costs include the crew cost, the power outage
cost, and the power generation cost. The crew cost includes
the cost of mobilizing and compensating crews for the repair
and restoration process. The crew cost depends on the number
of personnel required at the damage site, and the wage of
each individual crew. This cost is a function of time which
could be adjusted to consider different wages and man-hours
for different working shifts. The expected outage cost is
modeled as the value of lost load (VOLL), times the amount
of power outage. From economic point of view, VOLL is con-
sidered as an opportunity cost which is defined as the average
amount of money that each type of customer (e.g., residential,
commercial, or industrial) is willing to pay for each MWh
in order to avoid load interruption [54]. VOLL represents
the criticality of loads to be supplied, in which more critical

loads, such as hospital and water treatment facilities, have a
higher VOLL, and therefore, must be restored and supplied
with a higher priority. The expected outage cost considers
all load buses in the grid. There is an extensive study in
the literature on calculating VOLL for variety of loads and
accordingly monetizing power outages [53]–[57].

The proposed representation of power outages ensures
that crews are mobilized and allocated to repair and restore
damaged components with an emphasis on priority of supply-
ing more critical loads. The proposed objective significantly
expedites the supply of prioritized loads, and thus, consider-
ably improves electric power grid reliability and reduces eco-
nomic losses. Furthermore, the objective is to prioritize large
power outages, mostly occurred in densely populated areas.
The objective, moreover, includes to minimize expected gen-
eration cost. The expected generation cost plays an important
role in the repair and recovery process, as more economic
generation units has to be repaired with a higher priority to
prevent the commitment of uneconomical units. Moreover,
it assigns a higher priority to the transmission lines and
substations connected to more economic generation units.

The pre-hurricane crew mobilization model is subject to
uncertain outage states which stem from uncertain hurri-
cane path and intensity forecasts as described in Module 1.
Since the problem is subject to uncertainties and the exact
value of outage and generation costs cannot be determined,
the expected value of these terms must be included in the
objective. Thus, the objective will consist of certain and
uncertain parts. The certain part minimizes the primary allo-
cation of crews to damage sites by minimizing the crew cost,
and the uncertain part minimizes the expected outage costs,
the expected generation outage costs, and the expected cost
of secondary allocation of the crews which have not been
allocated beforehand due to uncertain nature of the forecasts.
A two-stage stochastic program with recourse is employed to
model the objective function as follows:
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]
, (4)

where i, b, l, and t are indices for generation units,
substations, transmission lines, and time, respectively; Cxt is
the hourly crew cost per person for component x at time t ,
Cg
it is the generation cost of unit i at time t , VOLLbt is

the value of lost load at bus b at time t , q+xt is the second-
stage cost coefficient of resource allocation to component x,
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uxt is the binary variable which represents the restoration
resource allocation status to component x at time t (it takes
value of 1, if the required resources for restoration of com-
ponent x is seized during time t; otherwise, it takes value
of 0), X+xts is the binary recourse variable for second-stage
resource allocation to component x at time t in scenario s
of outage state, Pit is the real power generation variable for
unit i at time t , Iit is the unit commitment binary variable for
unit i at time t , SUit is the startup cost variable of unit i at
time t , SDit is the shutdown cost variable of unit i at time t ,
and LIbt is the load interruption variable in bus b at time t .
The expected value operator represents the expected second-
stage (recourse) function, where the first term in the expected
value operator is the opportunity cost of load interruption over
the restoration planning horizon, and the second term is the
total generation cost including fuel costs, the startup costs and
the shutdown costs of generating units under scenario s. This
term is linearized by replacing IitsPits with a new variable, say
Fits along with the pertinent linearization constraints.
An important constraint which needs to be considered is

the inclusion of hazard zones. Although crews are sent to
the potential damage sites to quickly repair the damaged
components after the hurricane, they must be housed in
safe shelters which are sufficiently far from hazard zones
to be protected against any high risk condition during the
course of the hurricane. This process is currently employed in
several utilities across the United States in which employees
must reside near forecasted event locations to perform their
assigned duties after extreme events. Hazard zones will be
determined based on the forecasted information on hurricane
path and intensity.

The proposed pre-hurricane crew mobilization problem
is solved to determine the time, and the number of crews
which need to be mobilized to the potential damage sites. The
solution would help the grid operator to ensure that available
crews are mobilized in a timely and cost-effective manner
with the aim of restoring the power grid in minimum period
of time and minimum total restoration cost. Fig. 3 shows

FIGURE 3. Simple example of pre-hurricane crew mobilization.

a simple electric power grid to help to understand the
underlying impacts of hurricanes. Hurricane has damaged
the components in its path, including generation unit G1,
lines L1, L2, and L3, and substations B1 and B4. The other line
in the hurricane path is not damaged and is still operational.
After solving the pre-hurricane crew mobilization model, the
available repair crews are mobilized to strategic locations
in the power grid as shown. For a detailed case study on
Module 2, readers are referred to [37].

C. MODULE 3: POST-HURRICANE RECOVERY MODEL
After the hurricane, the grid operator conducts a damage
assessment by an aerial survey of the power network in the
affected areas as well as a ground check by inspectors [58].
The post-hurricane recovery model determines the optimal
number, time, and location of crews to be available at each
damage site, as well as the duration of each repair. The
proposed model provides a systematic way to dynamically
schedule andmobilize crews from one damage site to another,
while critical loads are considered to be supplied first.
Damage assessment determines whether a component has
damaged at all, and if damaged, estimates the required time to
repair and restore the component. For locally controlled and
operated components, such as generation units, the data on
the damage and time to repair will be determined by the local
operator to be sent to the grid operator. Similar to the pre-
hurricane crew mobilization model, two states are considered
for each component: damaged and operational. However, in
contrast to the pre-hurricane crew mobilization model, the
outage states are not obtained based on forecasts, and are
certain.
After determining the damage state of each component,

repair crews will be allocated to repair the damaged compo-
nents, i.e., the initially obtained plan will be revised. Similar
to the pre-hurricanemodel, the objective of the post-hurricane
recoverymodel is defined as the crew cost plus the outage and
generation costs. Since, the cost of spare parts and physical
components to repair the infrastructure is constant, it can be
eliminated from objective function. The objective spans over
a longer time period, equal to the maximum time required
to completely repair the grid and restore the power supply.
The time horizon must be considered as a relatively long
period in range of few weeks to incorporate the repair of
all components. Despite the pre-hurricane crew mobilization
model, the model proposed here is not stochastic since all
parameters are known to the grid operator. The post-hurricane
recovery model employs the solution of the pre-hurricane
crew mobilization model as a starting point, and accordingly
revises the resource allocation solution based on the actual
obtained data. The objective is to reallocate the resources
in order to enable a quick repair and restoration of incurred
damages to the electric power grid components in a way that
minimizes the expected system costs, after the hurricane hits
the power grid.
Both pre-hurricane and post-hurricane problems are sub-

ject to resource limitation and physical constraints imposed
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by the network. These constraints will be accurately modeled
for ensuring practicality and enhancing applicability to grid
operations. The mixed-integer linear programming can be
employed to model the constraints, which will ensure model
efficiency and scalability, as well as capability to be solved
by commercial solvers. The number of available crews to
repair damaged components is limited in each scheduling
hour. The resource constraint is added to the models to limit
the number of crews to be mobilized during each time period.
The physics of the power grid also imposes several constraints
to the problem, such as the load balance constraint, generation
capacity limits, and power flow constraints. The bus load
balance constraint ensures that the injected power to a bus
from connected transmission lines and generation units plus
the power outage is equal to the bus load. The generation
of each generation unit is restricted by its minimum and
maximum capacity limits. The power flow constraints deter-
mine the flow of power in transmission lines based on power
injections [59]. The modeling of these constraints has been
extensively discussed in the literature [36]. Efficient outage
and repair constraints are proposed based on mixed-integer
programming as an essential task in crew mobilization and
recovery models developed in Modules 2 and 3. The primary
model is nonlinear, but thanks to the binary variables in the
model, it can be linearized. By adding linearization con-
straints, the problem is transformed into an inflated mixed-
integer linear program. The original constraints are modeled
as follows

Pmini zGit
∏
b∈BG

zBbt ≤ Pit ≤ Pmaxi zGit
∏
b∈BG

zBbt , (5)

|PLlt | ≤ PLmaxl zLlt
∏
b∈BL

zBbt , (6)

∣∣∣∣PLlt −
∑

b∈BL βlbδbt

xl

∣∣∣∣ ≤ M
(
3− zLlt −

∑
b∈BL

zBbt
)
, (7)

0 ≤ zx(t+1) −
( t∑
k=1

uxk − TTRx

)
/M + ε ≤ 1, (8)

t+TTRx−1∑
k=t

uxk ≥ TTRx(uxt − ux(t−1)), (9)

where sets B, G, and L include system’s buses, generation
unites, and transmission lines, respectively. Subset BG rep-
resents connected buses to a particular generation unit, while
subsetBL represents associated buses to a particular transmis-
sion line. βlb is the element of the line-bus incidence matrix.
Parameters Pmini and Pmaxi are the minimum and the maxi-
mum generation capacity of unit i, respectively. Parameters
PLmaxl and xl are the maximum power flow capacity and the
reactance of line l, respectively. TTR is the expected time to
repair for a particular unit, line, or substation. ConstantM is a
big positive number, while constant ε is a small positive num-
ber, where 0 < ε < 1. Binary variables zBbt , z

G
it , z

L
lt represent

the outage state of substation b, unit i, and line l, at time t ,
respectively. Each of these binary variables takes value of 0

if the component in question is in damaged condition or still
is under repair; otherwise it takes value of 1. The continuous
variables PLlt and δbt are the real power generation by unit i
and bus voltage angle at substation b, at time t , respectively.

Equation (5) models the generation unit outage. When a
generation unit is on outage, its generationmust be set to zero.
In addition, when the substation connecting the generation
unit to the grid is on outage the generation of the unit would
be set to zero. Transmission and distribution lines are out of
service if the line itself or any of the substations at two sides of
the line are on outage, as proposed in (6). Equation (7) is addi-
tionally imposed to the model to relax the line flow equation
if any of outage states are zero. This constraint guarantees a
correct representation of the second Kirchhoff’s lawwhen the
line is out of service. Based on this constraint, if the line or any
of its connected substations, i.e., total of three components,
is on outage, the line will be on outage and the associated
line flow equation must be relaxed. M in this constraint
is a large positive constant which is used for relaxing (7).
Outage constraints guarantee that the damaged component is
on outage and the associated power generation/flow is zero.
Once the repair crews arrive at the damaged site and start
repairing the damaged component, the repair constraints are
imposed to the model to enable restoration of the damaged
component.

Equations (8) and (9) ensure that damaged components
are not repaired until the repair crews are available at the
damage site for at least the duration of time to repair, TTR.
Once the crews are available at the damage site for the
duration of time to repair, the outage state of the compo-
nent would be set to 1, which means that the component
is repaired and is ready to be used by the grid operator.
For any extent of time during the scheduling horizon that
crews are at the damage site for duration of time less than
the time to repair, the outage state will remain zero, there-
fore, the component will be out of service. Note that in
Module 2, the initial damage state of each component x,
i.e., zx0 is considered as a random variable. Therefore the
system inModule 2 is restricted to a set of chance constraints.
For a case study for deregulated powermarket usingModule 3
readers are referred to [36].

III. ADDITIONAL DISCUSSIONS
A. INTEGRATION OF SMART GRID TECHNOLOGIES
IN GRID RESPONSE AND RECOVERY
Recent rapid changes in electric power grids by large-scale
deployment of measurement and monitoring devices and
by integration of information and communication technolo-
gies, has made the case to evolve to a more intelligent
and responsive electric power grid. These changes, which
are taking place under the umbrella of smart grid, enable
a distributed and more intelligent decision making process
in the control and operation of the electric power grid to
enhance power grids economy, reliability, sustainability, and
resiliency. As a promising technology, smart grids are antici-
pated to promote the self-healing capability of the power grid,
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in which the grid could intelligently respond to undesirable
and unplanned events in order to minimize system impacts
and power outages, and return to normal operating state in
a reasonable amount of time. As extension to the proposed
recovery model, it is important to consider the impacts of
smart grid technologies on grid recovery in response to
hurricane events and other natural disasters. Twomajor issues
should be studied in detail: demand-side management and
adaptive topology control. Through demand-side manage-
ment, electricity customers are able to respond to electricity
price variations and financial incentives to efficiently adjust
their energy consumption profile. This goal can be achieved
using demand response schemes (i.e., to partially curtail less
sensitive loads or shift adjustable loads to other operating
hours), or deploying distributed energy resources (such as
local generation units or energy storage systems). By revising
the consumption profile, the amount of power outage will be
significantly lowered at customers premises. Subsequently,
the transmission and distribution network usage by these
customers will be reduced. Therefore, more room for grid
operator is provided to reroute the flow of power and supply
other customers during normal grid operation as well as emer-
gencies. Adaptive topology control is also a very efficient
method in rerouting the flow of power in distribution and
transmission networks, and accordingly reducing the power
outages, by switching specific transmission and distribution
components off. The integration of smart switches with a
capability of fast acting as well as communication with
other switches, phasor measurement units with a capability
of high resolution data measurement and transfer, and high
reliability distribution networks based on loop connection,
have facilitated the utilization of adaptive topology control
schemes for the electric power grid operation and control.

B. IMPACT OF POWER SYSTEM DEREGULATION
In the proposed proactive recovery scheme all grid compo-
nents are centrally operated by a grid operator. This is the
case for regulated power systems with a vertically integrated
architecture [60]. However, the deregulation of power
systems, which started in 1990s and was adopted by several
power systems in the United States and all over the world,
restructures the power system architecture by decomposing
different sectors. Under this architecture, various sectors of
the power system, including generation, transmission, and
distribution, are owned and operated by different entities.
This privatized architecture enhances competition among
different market players, particularly in the generation sector,
which results in lower electricity prices and improved
reliability. The physical operation and control of transmission
and distribution networks under the market environment is
performed by an electric utility company. The electric utility
company is also responsible for maintenance and upgrade
of the local transmission and distribution infrastructure,
including the planning for extreme weather events. Under
the market environment, electric utilities do not have the
generation data, as it is submitted by generation companies

to the market operator. Since all the required data to perform
proposed proactive recovery scheme are not available to a
single entity, a coordination scheme is required to transfer
the nonproprietary data among these entities and accordingly
enable an efficient hurricane recovery. In this case, the pro-
posed models will need to be further revised and extended to
consider the impact of deregulation, in which coordination
among several entities is required. This modification ensures
that the proposed models will be applicable to all power grids
independent of their structure.

IV. CONCLUSION
This paper investigated the development of a comprehensive
framework and the supporting theory for increasing resiliency
of the critical electric power grid infrastructure in response to
hurricanes and other natural disasters. The aim is to expedite
the recovery process and minimize the associated economic,
social, and physical disruptions. The proposed proactive
recovery model can result in profound impacts on local and
national energy security, reliability, and sustainability by
promoting the sound development of advanced techniques
related to extreme weather events and natural disasters which
are identified as the second cause of the largest blackouts in
the United States. A successful implementation of the pro-
posed model will directly impact the society through helping
electric power grid operators to better manage the available
resources, andminimize the aftermath of hurricanes and other
natural disasters, and accordingly saving billions of dollars in
electric power grid outage and recovery related costs.
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